Biology Education

Department of Biology | Lund University

Unlocking the Mysteries of the Immune System: new Roles of complement proteins in Diabetes and Cancer.

We invite highly motivated students to join our research group at the Clinical Research Centre in Malmö and participate in our ongoing research projects for their MSc thesis laboratory work. Our group is dedicated to studying the role of the immune system in diseases such as diabetes and cancer. The projects involve laboratory work using a variety of primary cells, cell lines, purified proteins, and patient samples. You will gain hands-on experience in planning and conducting laboratory experiments that address fundamental cellular mechanisms underlying physiological and disease processes.
Our experienced group members will closely guide you throughout the project. The projects include state-of-the-art methods for the investigation of cell biology, such as flow cytometry, cell metabolism (Seahorse) and confocal microscopy, protein interaction analyses using the proximity-ligation assay, and genetic manipulation employing the Cas9/CRISPR system. In addition, you will have the opportunity to learn microbiologic and immunologic techniques and to express and purify recombinant proteins. We use Labguru, an online laboratory notebook, to document all experiments. By participating in our research projects, you will gain valuable experience in cutting-edge research techniques, broaden your understanding of cellular mechanisms in physiology and disease, and contribute to our mission to advance knowledge in the field of immunology.
Below are examples of available projects:

The role of intracellular C3 and CD59 in pancreatic β-cells: Our research focuses on two important proteins found in human pancreatic islets: the central complement protein C3 and the complement inhibitor CD59. We discovered that intracellular C3 plays a key role in regulating autophagy (a process where cells clean out damaged components) and helping cells survive during stress. Now, we are investigating how C3 may influence β-cell function and contribute to islet inflammation. In addition, we are studying CD59 to understand its role in insulin secretion and β-cell metabolism and its potential impact on diabetes. By uncovering how these proteins work, we aim to reveal new insights into pancreatic β-cell physiology, allowing for a deeper understanding of diabetes.

The role of oncogene COMP in cancer: we found that the expression of cartilage protein COMP is associated with metastases and a poor prognosis for patients with various types of solid cancers. Additionally, COMP contributes to cancer resistance to therapy and inhibits the immune system. We aim to investigate the molecular mechanisms responsible for these novel functions of COMP, particularly those related to basic cell biology and tumor immunology. Ultimately, our long-term goal is to develop biomarkers for cancer and resistance to chemotherapy and to provide a basis for the development of novel treatments.

– King B.C., et al. (2019) Complement C3 is highly expressed in human pancreatic islets and prevents -cell death via ATG16L1 interaction and autophagy regulation., Cell Metabolism, 29, 202-210.
– Golec E., et al. (2022) Alternative splicing encodes novel intracellular CD59 isoforms that mediate insulin secretion and are downregulated in diabetic islets., PNAS, 119, e2120083119.
– Papadakos et al. (2019) Cartilage Oligomeric Matrix Protein initiates cancer stem cells through activation of Jagged1-Notch3 signaling., Matrix Biology, 81, 107-121.


Start date is flexible. More information about our research and us can be found on our homepage: https://www.protein-chemistry.lu.se


If you are interested, please contact prof. Anna Blom, Dept of Translational Medicine, anna.blom@med.lu.se

 

January 27, 2025

This entry was posted in

Molecular Biology